
Mano Technical Report

Tianyu Fu ∗ Anyang Su ∗ Chenxu Zhao ∗ † Hanning Wang ∗ Minghui Wu ∗ ‡

Zhe Yu Fei Hu Mingjia Shi Wei Dong Jiayao Wang Yuyang Chen

Ruiyang Yu Siran Peng Menglin Li Nan Huang Haitian Wei Jiawei Yu

Yi Xin Xilin Zhao Kai Gu Ping Jiang Sifan Zhou Shuo Wang

DeepMiner-Mano Team, Mininglamp Technology
(futianyu, suanyang, zhaochenxu, wanghanning, wuminghui, wangshuo.e)@mininglamp.com

Abstract

Graphical user interfaces (GUIs) are the primary medium for human-computer
interaction, yet automating GUI interactions remains challenging due to the com-
plexity of visual elements, dynamic environments, and the need for multi-step
reasoning. Existing methods based on vision-language models (VLMs) often suffer
from limited resolution, domain mismatch, and insufficient sequential decision-
making capability. To address these issues, we propose Mano, a robust GUI
agent built upon a multi-modal foundation model pre-trained on extensive web
and computer system data. Our approach integrates a novel simulated environ-
ment for high-fidelity data generation, a three-stage training pipeline (supervised
fine-tuning, offline reinforcement learning, and online reinforcement learning),
and a verification module for error recovery. Mano demonstrates state-of-the-art
performance on multiple GUI benchmarks, including Mind2Web and OSWorld,
achieving significant improvements in success rate and operational accuracy. Our
work provides new insights into the effective integration of reinforcement learning
with VLMs for practical GUI agent deployment, highlighting the importance of
domain-specific data, iterative training, and holistic reward design.

1 Introduction

In the digital world, graphical user interfaces (GUIs) serve as the primary gateway for human-
computer interactions, permeating everyday activities such as web browsing, mobile app usage, and
software navigation. With users spending an increasing portion of their time on digital devices,
autonomous GUI agents—intelligent systems capable of perceiving, reasoning, and acting within
GUI environments—hold immense potential to automate repetitive tasks, enhance accessibility, and
streamline workflows. For instance, these agents can facilitate complex operations like e-commerce
searches, form submissions, or multi-step interactions across platforms, thereby boosting efficiency in
domains from personal productivity to enterprise automation. Recent advancements in large language
models (LLMs) and visual language models (VLMs) have accelerated progress in this area, enabling

∗These authors contributed equally to this research
†Corresponding author.
‡Project leader.

agents to interpret screenshots and execute actions in a human-like manner, as demonstrated in
applications such as web navigation [14] and device control [29, 20].

Despite these advances, existing approaches to GUI agents exhibit both strengths and limitations.
Many prior GUI agents adopt a modular hybrid approach, facilitating quick domain-specific task
development through text extraction [38], understanding and reasoning modules [16], and memory
storage modules [34]. However, this dependence on expert input, and specialized VLMs renders
them vulnerable to failures from minor shifts in tasks, VLMs, or environments [33], yielding
poorer scalability and adaptability than modern end-to-end frameworks. On the positive side,
methods leveraging VLMs, such as those built on models like Qwen-VL [4, 30] or CogVLM [31],
offer versatility by directly processing visual inputs (e.g., screenshots), eliminating the need for
structured text like HTML or APIs. This visual-centric paradigm, exemplified in CogAgent [14]
and GUICourse [6], enables robust handling of diverse GUI elements, including icons, buttons,
images, and spatial layouts, and has achieved state-of-the-art performance on benchmarks like
Mind2Web [8] and AITW [24]. Recent advancements in VLM-based GUI agents have extended
to specialized domains, such as mobile environments. For instance, MagicGUI [27] proposes a
foundational agent for mobile GUIs, leveraging a scalable data pipeline with continued pre-training
(CPT) and reinforcement fine-tuning to enhance perception and grounding in high-density smartphone
interfaces. However, while MagicGUI focuses on mobile-specific challenges such as swipe gestures
and app-centric navigation, our Mano framework targets web and desktop GUIs, incorporating
unique components like the Mano-parking module for autonomous data extraction and Mano-verify
for error recovery. This differentiation allows Mano to address broader cross-platform variability,
including dynamic web structures and operating system diversity. Reinforcement learning (RL)-based
fine-tuning [18, 10, 41], as explored in DigiRL [3], GUI-RL [19], and WebRL [22], further enhances
decision-making in multi-step trajectories, narrowing gaps in purely supervised fine-tuning(SFT).
However, these methods often suffer from drawbacks: (1) reliance on low-resolution processing,
which leads to inaccuracies in recognizing fine-grained elements like small text or icons; (2) domain-
limited or simplistic datasets that fails to capture real-world variability and stochasticity across various
operating systems and websites; (3) LLMs/VLMs tuned via SFT alone may excel in single-step
predictions but lack the holistic reasoning needed for complete interaction sequences, resulting in
suboptimal performance in dynamic environments.

These limitations underscore persistent challenges in GUI agent development. ❶ Data mismatch:
pre-trained VLMs [4, 30, 13] are often optimized for natural images rather than GUI-specific content,
leading to poor optical character recognition (OCR), grounding, and widget understanding ability in
complex interfaces. ❷ Inefficient decision-making in long-horizon tasks: as SFT objectives focus on
immediate predictions without rewarding end-to-end success, while RL-based exploration—especially
online—can be computationally expensive and susceptible to policy drift. ❸ Sim-to-Real gap: The
inefficiency inherent in human-annotated trajectory collection, coupled with the sparsity of training
data, results in limited model adaptability to real-world environmental variations, including dynamic
events, operating system changes, and user interface element updates.

To address these challenges, we introduce Mano, a web GUI agent built upon a multi-modal
foundation model pre-trained on extensive web data. Specifically, our base model is UITARS-1.5-
7B [23], derived from Qwen2.5-VL-7B [5] through RL fine-tuning on GUI-related data. A key
innovation is our custom-designed simulated environment, which efficiently generates high-quality
interaction data from diverse operating systems, enabling robust data collection for all training stages
while mitigating real-world deployment costs and variability.

As illustrated in Fig. 1, our framework consists of three tightly coupled components. On the
left, an exploration module operates in simulated browsers and desktop environments to collect
interaction primitives and candidate goals, forming diverse trajectories for downstream training.
This module also features automated login assistance that not only manages cipher tasks but also
automatically collects related data, facilitating access to secure systems without compromising
security protocols. In the center, the inference pipeline of Mano drives task execution through a
structured loop of thinking–acting–verifying: the model interprets screenshots and prompts, generates
action descriptions (e.g., clicks or inputs), executes them as concrete commands, and leverages a
verifier to ensure consistency and recover from errors. The inclusion of the Mano-cipher enhances
the system’s capability to handle intricate tasks requiring secured data entry. Mano-parking is
utilized for crawling both structured and unstructured data from web pages, providing valuable
input for downstream processes. On the right, the training process integrates these signals into

2

Optimize ProcessMano Process Flow

Control Space

New Screen

Mano Explorer
Simulation Environment

Element semantics, hierarchy,
attributes, visibility/clickability

Mano Model Mano-parking

Mano-verify

Thought: The current page is in
the keyword mining interface.
The US site and the last 30 days
have been selected. According to
the task requirements, I need to
enter ‘Mininglamp’ as input ……
Action desp: Click on the text
area where the title “Mininglamp”
is located on the top…
Action:
click(start_box='<|box_start|>(1
138,271)<|box_end|>')

Is the URL Registered?

Function
Register

Function
Generator

Function
Validator

Web Data Storage

✅ ❌

Data
Extraction

Data
Validation

Screenshots Across Devices: Browser & Computer

DOM Tree + Mano-C

Brower

A11 Tree + OmniParser

Computer

Common Goals for Web, PC

Operating TargetInteractive Elements

Effective Trajectory

Training Data
for Grounding

Generate Next Steps Candidates

Ranking: Select top 5 elements by relevance,
reachability, risk.

click type scroll drag wait …

Next-step proposal: Map goals to state,
generate candidates and actions:

Step 1 [Action desp.]

Step 2 [Action desp.]

Step 3 [Action desp.]

.

.

.

Step N-2 [Action desp.]

Step N-1 [Action desp.]

✅

❌

✅

.

.

.

✅

✅

Ø Thought

Ø Plan

Ø Navigator

Ø Visualization

Step N [Action desp.]

Images From
Last 2 Memory

Memory
Trace

Function
Match

Generate grounding
QA from element

coordinates and types.

Click (x,y)

Stage2: Offline RL

Stage1: SFT

Pretrained VLM

Fine-tuning on Offline Collected Data

ScreenShots & Grounding QA

SFT Model

Step-by-Step Real Screenshot & Trajectory

Offline RL model

Stage3: Online RL

Fine-tuning on Static Trajectories

User prompt

Look for a wall night light
on Amazon, find one

rated 4 stars or higher
that's under $15, and add

two to the cart.

Interact with Environments

Explore Trajectories & Get Reward

Online RL Model

Verify Training - Collaborative Adversarial Training
Memory Trace

Step N
Offline Adversarial

Pre-Operation Screenshot

✅ ❌

Pre & Post-Operation Screenshot

Mano-verifyMano Model

✅

❌

Mano Training Stages
System Prompt

Screen Captures

Action Desp. Traces
Interactive Elements

Abandon Trajectory

Mano-cipher

Automated Login
Assistance for Cipher

LLM-Driven
Interactions

LLM-Driven
Trajectory
Evaluators

Figure 1: Overview of the Mano framework. The left part illustrates the Exploration Module,
which operates in simulated browsers and desktop environments to collect interaction elements and
candidate goals, generating diverse trajectories and login assistance data for training. The center
shows the Inference Process Pipeline, where the model follows a structured “think–act–verify” loop:
interpreting GUI states, producing action descriptions (e.g., clicks or type), executing them, and
validating outcomes through a verifier. The right part depicts the Optimize Process, a progressive
pipeline of SFT, offline RL, and online RL, which systematically strengthens reasoning, adaptability,
and end-to-end decision-making in dynamic GUI environments.

a progressive pipeline of SFT, offline RL and online RL, aligning static knowledge with robust
multi-step decision-making in dynamic GUI environments.

In the first stage, we perform full-parameter SFT on the model using carefully processed interaction
data sourced from real data and simulated environment across multiple websites and operating
systems. This stage enables the model with focused, accurate contextual understanding (detailed
data processing methods are described in Sec. 3), producing an initial model denoted as Mano-SFT.
However, this SFT-tuned model still lack the end-to-end decision-making capability required for
complete GUI interaction trajectories, as the SFT objective only requires predicting the current step’s
reasoning, summary and action based on preceding context.

To bridge this gap, the second stage employs offline RL fine-tuning with group relative policy op-
timization (GRPO) [25], leveraging data from the simulated environment and designing rewards
specifically tailored to encourage successful completion of full interaction sequences offline, enhanc-
ing the model’s holistic GUI reasoning and GUI decision-making ability. This yields Mano-Off, a
more capable intermediate model.

Finally, to further adapt the model to diverse operating environments and GUI interactions, we deploy
online RL in the third stage based on our simulated environment, again leveraging GRPO but with
distinct rewards focused on real-time adaptability and exploration in dynamic settings. During this
phase, the agent collects new interaction data through online trials, which is then cycled back as offline
data for further refinements, enabling continuous improvement via iterative loops. This culminates in
the final Mano, which demonstrates superior robustness across varied web GUI scenarios.

Through this progressive pipeline, Mano directly addresses the challenges: it resolves data mismatches
by integrating domain-specific, high-fidelity simulated interactions; strengthens multi-step reasoning
via targeted RL rewards; and ensures adaptability through efficient online exploration in a controlled
yet diverse environment. Our contributions encompass this comprehensive training framework,
empirical validations on GUI benchmarks, and novel insights into RL’s application—particularly
GRPO with stage-specific rewards—in overcoming VLM limitations for practical agent deployment.

To summarize, Mano presents the following contributions:

1. A novel simulation environment for iterative data generation: we design an simulated envi-
ronment that efficiently produces high-quality interaction data from diverse operating sys-
tems and various websites, supporting all training stages through a cyclical process—where

3

online exploration collects new data that feeds back into offline updates—thus addressing
data mismatches and scalability issues while reducing real-world deployment costs.

2. Novel insights on RL integration: through empirical evaluations on GUI benchmarks, we
provide new insights into RL’s role, including a tailored application of the GRPO algorithm
with distinct reward functions for the offline and online RL stages—balancing policy stability
with goal-oriented optimization—in bridging limitations of VLMs for practical, adaptable
GUI agent deployment.

3. State-of-the-art performance: Mano achieves state-of-the-art (SOTA) results on multiple
GUI benchmarks, outperforming prior agents in metrics like success rate and efficiency,
validating the effectiveness of our integrated framework in real-world GUI navigation and
interaction tasks.

2 Method

Fine-tuning on offline collected data via SFT

Pretrained
VLM

Stage1: SFT
Fine-tuning on static trajectories via offline RL
Stage2: offline RL

Explore trajectories & Get rewardInteract with various environments

Update

Stage3: online RL

ScreenShots

Mano-SFT Mano-Off

Mano-Off Mano

Step-by-Step Real Screenshot

User prompt

Look for a blue
basketball on Amazon,

find one rated 4.5
stars or higher that's
under $30, and add it

to the cart.

Fine-tuning on static trajectories via online RL
R= 𝛼𝑅𝑓𝑜𝑟𝑚𝑎𝑡 + 𝛽𝑅𝑜𝑝_𝑡𝑦𝑝𝑒 + 𝛾𝑅𝑎𝑛𝑠𝑤𝑒𝑟

Output format

Thought: …..

Action Desc:…..

Action:……

Op Type

① click ?

② left double?

③ right single?

④ right double?

⑤ drag?

⑥ hot key?

⑦ type?

⑧ scroll

⑨ wait?

Answer
① content match

② 𝒙𝐩 − 𝒙𝐠𝐭 ≤ 𝜺

max
𝜃

𝔼𝜏∼𝜋𝑜𝑙𝑑 𝑅 𝜏

Figure 2: Overall fine-tuning framework of Mano for GUI-oriented tasks. The pipeline consists
of three progressive stages: (i) SFT on offline demonstrations; (ii) Offline RL leveraging static
trajectories with reward decomposition; and (iii) Online RL with active environment interaction. The
system incorporates step-level reasoning, explicit action description, and operation type selection
(e.g., click, drag, type, scroll), while final performance is evaluated through structured outputs and
multi-dimensional rewards combining format accuracy, operation correctness, and task completion.

2.1 Training of Mano

Our Mano is built upon a multimodal foundation model pre-trained on extensive web data. Specifically,
our base model is UITARS-1.5-7B [23], which is derived from Qwen2.5-VL-7B via RL fine-tuning
using GUI-related data. As illustrated in Fig. 2, the overall framework of Mano proceeds through
three consecutive learning stages: SFT, offline RL and online RL fine-tuning. Throughout the entire
training process, we employ full parameter fine-tuning.

2.1.1 First-stage: Supervised Fine-tuning

The primary objective of this initial stage is to bridge the domain gap between the general-purpose
pre-training of the base VLM and the specialized requirements of web GUI interaction. This phase is
designed to instill a robust perceptual and semantic foundation in the model, specifically tailored to
the unique visual grammar of computer interfaces.

To achieve this, our base VLM is fine-tuned on a curated dataset of decision-centric GUI interaction
trajectories, sourced from multiple websites across different operating systems. Details of data

4

processing will be elaborated in Sec. 3. A critical aspect of our data processing is the preservation of
native, dynamic image resolution. In line with the methodology of Qwen2.5-VL, we avoid aggressive
downsampling.

This is predicated on the observation that GUI screens are highly sensitive to fine-grained details;
elements such as small font text, subtle icons, buttons, text, and diverse layout structures (which can
be highly dense), dialogs, or densely packed widgets are prevalent in real-world applications and are
often imperceptible at lower resolutions. Maintaining high fidelity in the visual input is therefore
paramount for accurate perception and grounding.

While parameter efficient fine-tuning (PEFT) methods, such as LoRA [15, 42] or adapter tuning [12,
39, 40], are effective for adapting models to new tasks or domains, we posit that they are insufficient
for rectifying the fundamental domain mismatch between natural images and GUIs. Adapting the
model to the unique characteristics of GUIs—including its distinct OCR patterns, widget affordances,
and spatial semantics—requires substantial updates to the model’s core components, particularly the
vision encoder and the cross-modal attention layers.

Therefore, we perform full-parameter SFT, unfreezing the vision-language adapter and the lan-
guage model while keeping the visual backbone frozen, to allow for a comprehensive adaptation
of its internal representations to the target domain. Formally, given a dataset of expert trajectories
DSFT, where each trajectory τ = {(s1, y1), (s2, y2), . . . } consists of a sequence of states and the
corresponding expert utterances (containing reasoning, summary and action), our objective is to
maximize the log-likelihood of these expert utterances. The SFT loss function is defined as the
standard auto-regressive cross-entropy loss over the tokens of the target utterances:

LSFT = −Eτ∼DSFT,(si,yi)∼τ logP (yi,j |si, yi,<j ; θ) (1)

where θ represents the full set of model parameters, si is the multi-modal state input at step i, and
yi,j is the j-th token of the target expert utterance yi. By optimizing this objective across all model
parameters, we encourage a deep, foundational alignment with the GUI domain, resulting in the
Mano-SFT model, which serves as a highly capable starting point for the subsequent reinforcement
learning stages.

2.1.2 Second-stage: Multi-step Reasoning via Offline Reinforcement Learning

While the Mano-SFT model acquires a strong perceptual foundation, its training objec-
tive—maximizing the likelihood of the next expert action—predicting the current step’s reasoning,
summary, and action based on preceding context. This single-step focus does not guarantee optimal
performance over long, multi-step interaction trajectories. As shown in Tab. 8, the Mano-SFT model
achieves a score of only 32.7 on the OSWorld-Verified [34] benchmark.

To bridge the gap between single-step accuracy and holistic, multi-step reasoning, we introduce an
offline reinforcement learning stage. This phase allows the agent to learn from the outcomes of entire
trajectories without the high cost and potential instability of live, online exploration. We fine-tune
the Mano-SFT model using GRPO , rewarding the model for correctly completing full interaction
sequences. This step enhances overall task completion ability. To further adapt the model to diverse
operating environments and dynamic GUI interactions, we deploy it in a simulated environment for
online RL. During this stage, we freeze the adapter while keeping the LLM part trainable.

Reward Design for Offline RL. In the offline setting, it is crucial to encourage the agent to learn
effective strategies while preventing its policy from deviating drastically from the reliable expert data.
Therefore, we design a dense, process-oriented reward functionx‘ that provides granular feedback at
each step.

Specifically, Mano can be formulated as a finite-horizon Markov Decision Process (MDP) [26],
defined by the tuple M = {S,S0,A,R, T , H}, where:

• S denotes the state space, incorporating user inputs and screenshots;

• S0 defines the initial state, determined by the environment,varied across different operating
systems and websites;

• A represents the finite action space (i.e., Mano’s actions);

5

• T : S ×A× S → [0, 1] specifies the transition probability to the next state given current
state and action;

• R : S ×A → R is a rule-based reward function for task completion;
• H indicates the finite steps of the episode per task.

The objective during RL stage is to maximize the cumulative reward.

max
θ

E[
H−1∑
i=0

Ri(si, ai)] (2)

where Ri(si, ai) ∈ R denotes the reward at step i, formulated as a weighted sum of three components:
a format reward(Rformat), a type reward(Rop_type), and a final answer reward(Ranswer). The reward R
is a weighted sum of three components:

R = αRformat + βRop_type + γRanswer (3)

where Rformat provides a positive reward if the agent’s generated utterance conforms to the required
format, Rop_type rewards the selection of a plausible action type given the context, and Ranswer denotes
the reward based on either spatial criteria (i.e., whether the result falls within the GT bounding box or
maintains a distance to the target point below a given threshold) or textual matching accuracy. The
weights are set to prioritize correctness and progress while penalizing invalid outputs (γ > β > α).
We omit si, ai for simplicity and α, β, γ ∈ (0, 1), α + β + γ = 1. This dense reward structure
provides a stable learning signal that refines the agent’s reasoning process step-by-step.

The optimization objective follows the GRPO formulation, which normalizes rewards within a group
of trajectories sampled for the same task to generate advantages and clips the probability ratio to
constrain policy updates:

LGRPO = −Eτ∼Doffline

[
H−1∑
t=0

min

(
πθ(at|st)
πref(at|st)

Ât, clip
(

πθ(at|st)
πref(at|st)

, 1− ϵ, 1 + ϵ

)
Ât

)]
(4)

where Ât is the normalized advantage estimated from the group-wise rewards.

2025/9/10

Simulation Environment Pool

Mano Model

… …Playwright Instance 2

… …

Screenshot Update

Inference
Thought & Action

No

Yes

Playwright Instance 1

Playwright Instance N

Export
Trajectory

Execute
 Action

Reset this
Instance

Memory Trace
Fetch Status
& Screenshot

Is finished?

Figure 3: Overall framework of online RL in Mano. The Mano model interacts with multiple parallel
Playwright instances, each representing a GUI environment. For every step, the model fetches the
status and screenshot, performs inference to generate thought and action, and then executes the action
within the corresponding environment. The loop continues until the task is completed, while memory
traces are recorded and trajectories are exported for further training and analysis.

2.1.3 Third-stage: Online Reinforcement Learning

As shown in Fig. 3, during the online RL phase, we establish our own simulation environment pool
for model interactions with real environments. For browser-use agent (BUA) environments, we
launch a group of browsers and communicate with pre-opened browsers through Chrome DevTool
protocol (CDP) of Playwright[9], each instance of which is assigned to one browser. By managing

6

this connection pool, we enable simultaneous operations across multiple browsers. For computer-
use agent (CUA) environments, we utilize Docker containers with Ubuntu images, implementing
multi-environment concurrent model interactions through Docker instance pool management.

During the online RL phase, each batch contains only user prompts. Upon training initiation,
each training task in the batch launches a virtual environment to retrieve current environmental
information, such as screenshots. This environmental information is fed to the model for prediction,
and the predicted actions are parsed into actual operations applied to the environment. Through this
interaction, we obtain operation trajectories and corresponding completion statuses for each training
task in real environments. This online sampling approach captures more environmental variations,
compensating for the sparsity of offline trajectory distributions.

We do not directly employ online interaction with model updates during training due to the high
temporal cost of such interactions. The approach of online sampling with offline filtering enables
more effective cleaning and filtering of noisy trajectories, while allowing the implementation of
various strategies to adjust the difficulty distribution of trajectory samples, preventing ineffective
learning from excessive failure trajectories.

Following this phase, as shown in Tab. 8, the model’s average score on the OSWorld-Verified
dataset [34] improves by 7.9, reaching 41.6. The three aforementioned stages can be iterated
cyclically until performance improvements reach a saturation point on our validation set. Through
this training process, we obtain the final Mano model.

2.2 Mano-parking

User Requirements
in Natural Language

Data
Processing

Function
Match

Data
Extraction

Function
Generator

Function
Validator

Function
Register

Translate to URL &
Data Attributes

User Input
Please help search keyword hand
held fan in tiktok, and give me the
result of videos published in the
recent month, result includes video
title, video link and num of likes.

URL：https://xxxx.com/search/
video?qhandheld%20fan

[title, link, likes,
publish time]

Attributes:

Registered
Pattern
✅

Result：
[{title: “small but powerful fan”,
link: https://@user/video/1234
likes: 898,
publish time: 8/6/2025}, …]

Verify non-empty field ratio,
check data anomalies with LLM.

Data
Validator

Process Data to Meet
User Requirements

❌ Post-Failure Auto Fix

✅ Register

Initiate New
Function
❌

✅
Use New
Function

Check Code
Quality Issues

Register Function
with URL Pattern

Match Register Function
with URL Pattern

Process using LLM
Legend

Logic-based decision or execution

Input & Output

Figure 4: The operational workflow of Mano-parking, which illustrates its autonomous data extrac-
tion pipeline. The process begins with request reception and function registry lookup, followed by
either direct execution of pre-validated functions or initiation of a multi-phase extraction synthesis.
In the latter case, simplified HTML structures are obtained through browser automation and cleaning
algorithms, combined with user-defined attribute specifications to generate customized extraction
functions. These functions undergo a three-tier validation—field completeness, semantic consistency,
and structural integrity—before being executed and stored for reuse. Furthermore, Mano-parking
incorporates continuous monitoring and a self-healing mechanism, enabling adaptive regeneration
of extraction logic when website structures evolve. This design ensures robustness, efficiency, and
minimal human intervention across diverse web environments.

Within the Mano ecosystem, Mano-parking represents a breakthrough in autonomous data extrac-
tion technology. This specialized component transforms unstructured web content into organized,
actionable datasets without requiring users to possess programming expertise. Unlike conventional
web scrapers that require constant maintenance, Mano-parking functions as an intelligent agent that
understands, adapts to, and extracts data from diverse website architectures with minimal human
oversight. The overall workflow of Mano-parking is illustrated in Fig. 4, highlighting its automated
pipeline from request handling to adaptive self-repair.

The operational workflow of Mano-parking follows a deterministic and efficiency-oriented protocol.
Upon receiving an extraction request, the system queries its function registry using the target URL as
the primary identifier. In cases where a corresponding extraction function exists within the registry,
the system executes the pre-validated function with minimal computational resources. Conversely,
when the system encounters an unregistered URL pattern, it initiates a multiphase extraction synthesis
process: the system acquires semantically preserved, structurally simplified HTML content through

7

browser automation and intelligent cleaning algorithms, which it then integrates with user-specified
natural language attribute requirements to generate a tailored extraction function. The newly generated
function subsequently undergoes systematic validation before execution and registration in the
function repository for subsequent utilization.

To guarantee data quality and reliability, Mano-parking incorporates a comprehensive three-tiered
validation framework.The first tier verifies extraction completeness by monitoring required and
optional field coverage against domain-specific thresholds. The second tier employs language models
to detect semantic anomalies, identifying logical inconsistencies and contextual irregularities that
traditional validation methods might miss. The third tier analyzes the structural integrity of the code,
examining generated extraction functions for proper syntax, resource utilization, exception handling,
and architectural soundness to prevent potential run-time failures.

Autonomous self-evolution distinguishes Mano-parking from conventional extraction systems. The
platform continuously monitors extraction function performance through scheduled health checks,
detecting when website structural changes – inevitable in today’s rapidly evolving digital landscape
– cause function degradation. Upon validation failure, the auto-repair module analyzes the failure
context, examines the current website structure, and autonomously regenerates extraction logic,
adapting to structural modifications while maintaining extraction intent. This self-healing capability
dramatically reduces maintenance overhead and ensures consistent data availability despite the
evolution of the source website.

Besides this integration of validation frameworks and self-correction mechanisms, the system’s core
technical innovations include: (1) browser automation for navigating websites, circumventing risk
control mechanisms, executing preprocessing actions, and loading dynamic content;(2) intelligent
HTML cleaning algorithms achieving >90 percent compression with particularly high efficiency for
JavaScript-heavy websites; (3) adaptive prompt engineering for context-optimized code generation;
(4) component-based URL pattern recognition for precise function matching.

2.3 Mano-verify Model

Within the Mano system, Mano-verify serves as a crucial verification module designed to ensure
the correctness of every step of planning and execution. While the Mano model is responsible for
generating actions across multi-modal contexts, Mano-verify functions as a safeguard, providing an
independent assessment of whether a given operation has been carried out accurately. Its primary role
is to judge the fidelity of action execution, detect possible discrepancies, and immediately intervene
in the reasoning loop when errors are detected. This verification mechanism enhances the robustness
of the entire system, preventing error propagation and enabling self-correction.

The inputs to Mano-verify are carefully structured to capture the multimodal nature of interaction.
They include: (i) the pre-operation screenshot, representing the state of the interface before execution;
(ii) the post-operation screenshot, reflecting the environment after the action; and (iii) textual context,
consisting of the system prompt, the action description produced by the Mano model, and a shared
history of previous operations. By jointly reasoning over these visual and textual signals, the
verification model determines whether the current step has been executed correctly.

Training Mano-verify involves a distinct adversarial element, reflecting the dynamic interplay be-
tween action description and evaluation. The foundation of the training corpus is built from two
complementary sources: curated data collection and simulation environments. These datasets pre-
dominantly yield positive samples, representing correct operations with clear instructional value.
However, reliance on positive examples alone would bias the verifier toward overconfidence. To
address this, we systematically harvest trajectories from failed tasks during real Mano runs. These
failed paths, rich in incorrect operations, are then corrected through human-in-the-loop intervention.
The resulting dataset not only supplies valuable negative samples for supervision but also provides
revised action descriptions that feed back into the training of the Mano model itself. In this way,
Mano-Verify supports a co-evolution of planning and validation, strengthening both components of
the system.

Formally, we denote the input state as multimodal tuple

xt = {Ipret , Ipostt , pt, adesp., ht}, (5)

8

where Ipret and Ipostt represent pre- and post-operation images, pt is the system prompt, adesp. is the
last action description, and ht denotes the historical trace. The verification model outputs

yt = fθ(xt), (6)

where yt ∈ {correct, incorrect}, along with diagnostic labels pointing to errors in either description
or execution.

During inference, Mano-verify operates as a stepwise checkpoint. After each Mano model, it
evaluates correctness and records the judgment within the system’s memory trace. This feedback loop
is deliberately lightweight and expressive: verification outcomes are stored not only as structured
annotations but also marked with intuitive emoji symbols, signaling success or failure. Such symbolic
cues, embedded in the history available to the Mano model, function as compact yet powerful
indicators of operational reliability. The process can be abstractly written as:

ht+1 = ht ⊕ verify(xt), (7)

where ⊕ denotes the augmentation of history with verification feedback.

This ensures that the agent’s decisions remain accurate, interpretable, and aligned with intended goals,
ultimately enhancing the practicality and trustworthiness of Mano in real-world applications.

Mano-cipher

Username

Password

Security Captcha Screenshot

Login Page

Mano Model

Mano Model

✅

Verification
passed

Figure 5: Mano-cipher is a specialized authentication GUI model. This GUI model facilitates
automated login operations across diverse systems by handling various captcha types—including
alphanumeric, image-based sliding, rotation, content recognition, and logical reasoning challenges.
Upon successful verification, system control is returned to the Mano for subsequent tasks.

2.4 Mano-cipher

Mano-cipher represents an advanced authentication graphical user interface (GUI) model that seam-
lessly integrates credential verification with the Mano online RL mechanism. The primary objective
of Mano-cipher is to facilitate automated login processes for diverse authentication systems, encom-
passing the input of usernames and passwords, as well as the completion of various verification code
challenges. As depicted in Fig. 5, when encountering a system or web interface that requires user
authentication, Mano asks the user for their credentials, subsequently automating the completion
of the form and navigating through multiple verification code procedures. Mano-cipher exhibits
robust capabilities in managing an array of verification code modalities, including but not limited
to alphanumeric sequences, image-based sliding puzzles, image rotation tasks, content recognition
challenges, and logical reasoning tests. Upon successful authentication, Mano-cipher efficiently
transfers system control back to Mano, enabling the continuation of subsequent operational tasks.

In the Mano-cipher training pipeline, we leverage a dataset of 2,000 landscape images as backgrounds
for synthesizing CAPTCHAs, generating paired training images and ground-truth operational se-
quences for diverse CAPTCHA instances. The training proceeds in two stages: (1) We first apply SFT
to establish an initial model that produces properly formatted actions with acceptable coordinate local-
ization accuracy; (2) We then implement online RL by deploying multiple headless browser instances
concurrently to generate varied CAPTCHAs as online training data, utilizing rule-based reward

9

signals for GRPO. Through iterative real-time environment interactions within this reinforcement
learning framework, we obtain the final optimized model.

3 Data Cycling System

Table 1: Template for Mano, prompt will be replaced with the specific task during training.

You are a GUI agent. You are given a task and your action history, with screenshots. You need to
perform the next action to complete the task.
Output Format
Thought: ...
Action Desp: ...
Action: ...
Action Space
click(start_box=’<|box_start|>(x1,y1)<|box_end|>’)
type(content=”)
...
Note
- Use English in ‘Thought‘ part.
- Write a small plan and finally summarize your next action (with its target element) in one
sentence in ‘Action Desp‘ part.
User Instruction:
prompt
Action History:
step 1: xxx
step 2: xxx
...
step n-2: xxx <image>
step n-1: xxx <image>
current screenshot is <image>

3.1 Template and Action definition

To train Mano, we design a concise template to guide the model in following specific instructions.
As depicted in Tab. 1, this template first requires the model to reason about the user’s input, then
provide a succinct summary(For simplicity, we use summary to refer to ’Action Desp’. Henceforth,
summary and ’Action Desp’ are used interchangeably in the text.) of the reasoning process, and
finally generate an answer that must fall within a predefined action space given in Tab. 2.

Table 2: Definition of Action Space for Mano

Action Params Description
click Coordinate Simulates a mouse left-click event.
left_double Coordinate Simulates a mouse left-double-click event.
right_single Coordinate Simulates a mouse right-click event.
right_double Coordinate Simulates a mouse right-double-click event.
drag Start & target coords Drags an object to specified location.
hotkey – Triggers a hotkey combination.
type Text input Inputs text and submits with \n.
scroll Coord + direction Simulates mouse wheel scrolling.
scroll menu Coord + direction Simulates mouse wheel scrolling in specified area.
wait – Waits 5s and takes a screenshot to check for changes.
call user – Trigger human assistance
finish – Finished

10

Various URLs

LLM generates

Mano-C & LLM
Candidate elements for next

exploration & operations

No
Exploration for this
candidate finished Yes

Common operation targets
for current website

Current webpage element
descriptions & DOM info

Max exploration
depth reached?

Webpage for
current exploration

Figure 6: The schematic representation of the automation engine’s architecture for collecting web
interactions. The process begins with the generation of various URLs by a large language model
(LLM). These URLs serve as inputs to identify common operation targets specific to the current
website. Subsequently, the system fetches interactive elements on webpages using Mano-C, while
also gathering descriptions of current webpage elements along with Document Object Model (DOM)
information. This data facilitates the selection of candidate elements for subsequent exploration
and operations. The iterative process is governed by a condition that checks whether the maximum
exploration depth has been reached. If not, the cycle continues; otherwise, the exploration for the
current candidate is deemed complete.

3.2 Unified Trajectory Collection Pipeline for Desktop and Web Environments

To efficiently collect interaction trajectories across both desktop and web environments, we develop a
unified automated data collection pipeline with domain-specific adaptations. As shown in Fig. 6, the
detailed procedure is exemplified through the workflow of collecting operational trajectories in web
environments.

1. Infrastructure and Objective Generation We establish a scalable cluster of virtual en-
vironments capable of simulating diverse interaction scenarios. For each target applica-
tion—whether a web URL or desktop software module—we employ Claude [2] to auto-
matically generate a prioritized list of functional objectives while filtering out rarely-used
features. This curated objective list provides contextual guidance throughout the exploration
phase.

2. Multi-Modal Element Extraction For web environments, we develop a custom browser
extension Mano-C that comprehensively extracts interactive elements, capturing both spa-
tial coordinates and semantic attributes of each DOM element. This enables systematic
collection of all interactive elements on web pages along with their bounding boxes and prop-
erties. Mano-C is our proprietary Chrome extension designed for comprehensive extraction
of interactive elements from web pages. The extension employs a systematic DOM tree
traversal approach to identify: (1) HTML elements with explicit interactive semantics, (2)
elements containing ARIA attributes, (3) elements with registered click event listeners, and
(4) encapsulated interactive components. We implement a multi-tiered filtering pipeline that
eliminates elements outside the viewport boundary and examines CSS properties including
display, visibility, and opacity to exclude non-visible elements. Additionally, elements
with negligible dimensions (e.g., 1×1 pixels)—commonly used for tracking purposes or as
hidden elements—are filtered out. Our system incorporates specialized handling for mod-
ern web technologies, including recognition of Web Components and framework-specific
custom components (React, Vue), detection of contentEditable regions, and identification
of Canvas-based interactive regions through data attributes or designated class selectors.
This comprehensive approach ensures accurate and exhaustive capture of all interactive
elements present on web pages. For desktop environments, we implement a hybrid approach
combining Accessibility Tree (A11y Tree) parsing with OmniParse[28] for collaborative
filtering, enabling robust extraction of interactive elements and their attributes across diverse
desktop applications. This dual-mechanism approach ensures comprehensive coverage of
UI elements that may be missed by single-method extraction.

3. Element Annotation and Grounding We leverage large language models to annotate each
extracted element with semantic labels, functional descriptions, and interaction categories,
generating rich grounding data essential for training. This annotation process provides
structured supervision signals for learning element-action associations.

11

4. Intelligent Exploration Strategy We design a prompt-engineered module for strategic
element selection during exploration, incorporating explicit constraints to prevent cyclic
paths and redundant branch exploration. The exploration follows a depth-first search
(DFS) strategy with a maximum depth of 10 levels, balancing thorough coverage with
computational efficiency. At each explored state, the system captures screenshots and stores
annotated interaction data for subsequent processing.

5. Quality Assessment Pipeline Post-exploration, we implement a comprehensive trajectory
scoring pipeline to identify high-quality interaction sequences. We formulate evaluation
criteria as structured prompts, enabling Claude to assess trajectory quality across multiple
dimensions including completeness, intent clarity, and task coherence. Only trajectories
meeting stringent quality thresholds are retained, ensuring the final dataset comprises
diverse, high-fidelity interaction demonstrations suitable for training robust agents. This
unified pipeline enables scalable collection of interaction trajectories across heterogeneous
environments while maintaining consistency and minimizing manual annotation overhead.

Table 3: Data organization during SFT.
input pred

pspuo0 t0s0a0

pspuo0s0o1 t1s1a1

pspuo0s0o1s1o2 t2s2a2

pspus0o1s1o2s2o3 t3s3a3

pspus0s1o2s2o3s3o4 t4s4a4

...
...

pspus0s1s2 · · · sn−5sn−4on−3sn−3on−2sn−2on−1 tn−1sn−1an−1

3.3 Data organization

Each instance of a GUI-agent task can be regarded as a complete trajectory consisting of N steps. Each
step comprises a web screenshot, meta-information of web elements (such as functional descriptions
and positions of buttons), click event coordinates, click response information, among other data. This
type of data forms a multi-modal dataset integrating images, text, and actions. The data includes a
system prompt ps, a user prompt pu, an image o observed from the environment, the agent’s thinking
process t, summary s, and the corresponding action a. Specifically, at SFT stage, each data sample
is structured as Tab. 3, where oi, ti, si, ai represent the observation, thinking process, summary and
corresponding action at the i-th step, respectively. For each data instance in the SFT stage, the input
for the current step is constructed by retaining the historical observations from the previous two steps
(if available), denoted as oi−1, oi−2, along with the current observation oi, as well as all historical
summary records up to the current step. During the RL phase (including both offline and online RL),
we directly provide the inputs ps, pu, o0 , expecting the model to leverage both its intrinsic knowledge
and the prior experience gained during the SFT stage for decision-making in GUI environments to
autonomously explore trajectories that maximize cumulative reward. This process is consistent with
conventional RL frameworks.

During SFT stage, unlike the data organization scheme used in UI-TARS, we incorporate an additional
summary following the thinking part at each step, which was absent in UI-TARS. Compared to the
thinking process, we argue that a concise and clear summary exerts a more critical influence in guiding
subsequent action generation. This approach also encourages the model to allocate greater attention
to the succinct summary when generating actions. As shown in Tab. 7, this single modification in the
data organization format alone leads to a performance improvement of 2.8 (increasing from 29.9 to
32.7). Concurrently, we visualize the attention maps of the Mano-SFT. As illustrated in Fig. 7, during
the reasoning process, the model’s attention to the summary significantly outweighs that allocated to
other parts, providing further evidence to support our hypothesis.

Meanwhile, we believe that historical frames are beneficial for current decision-making. As presented
in Tab. 6, the model achieves a performance of only 30.6 when no historical frames are used, when
the number of historical frames is increased to 4 or 5, the performance does not improve further
compared to retaining just 2 frames. Therefore, to balance performance and efficiency, we set the

12

Context Tokens (scaled for visualization)

0

2

4

6

8

10

12

14

16

18

20

22

Ac
ti

on
 T

ok
en

s

287 tokens 2692 tokens 2692 tokens 2692 tokens 109 tokens 26 tokens

prompt

0.35×

history-image1

0.04×

history_image2

0.04×

current-image

0.04×

thinking

0.90×

summary

1.3×

0.0

0.2

0.4

0.6

0.8

1.0

Attention W
eight

Figure 7: Attention heatmap of action tokens over prompt, historical/current images, thinking and
summary. Note that due to the significantly longer sequence of image tokens compared to the
summary and thinking process, the image tokens were compressed via max-pooling-based down-
sampling. The vertical axis represents all tokens of the action sequence. Each row corresponds to the
attention distribution of one action token over the context. Brighter color indicates higher attention
weight.

number of historical frames to 2 in all subsequent experiments. Additionally, as shown in Fig. 7,the
attention from actions is more pronounced on the current image compared to historical ones. In
contrast, the attention allocated to earlier frames is minimal. This further validates the effectiveness
of our data organization strategy.

3.4 Closed-loop data cycle

Mano-SFT

Mano-Off

Mano

trajectory

(prefix, label) pair

explore in environments

update policy

Figure 8: Illustration of the data cycling. We
sample from the dataset for SFT. Then, com-
plete trajectories are picked to fine-tune the
model, which is later used in a simulated en-
vironment for RL. During this process, high-
value trajectories are retained and are refined
through LLM assistance and human correction
before being added back to the original dataset.

We have designed a data cycling system, with its
framework depicted in Fig. 8, which utilizes in-
teractive operation within the GUI web environ-
ment to collect decision-centric data. This enhances
the model’s capability to proactively perceive and
handle real-world stochasticity and non-stationarity
during both the SFT and offline RL stages. This
approach facilitates continuous self-improvement
and iterative learning of the model. Specifically, we
retain and reuse trajectories generated during the
online RL phase in which the model either executes
every step correctly or eventually accomplishes the
task despite intermediate errors. To account for the
stochastic nature of exploration and to enhance data
diversity—–particularly beneficial when training
smaller models that may struggle with such sam-
ples,we preserve the fully correct trajectories and
directly incorporate them into the SFT phase for
iterative training. For trajectories that lead to suc-
cessful outcomes but contain intermediate errors,
we refine them through a process where LLM gen-
erate initial drafts, which are then reviewed and

13

corrected by human experts before feeding them into the SFT stage. This cyclic process continues
until performance gains on our validation set become marginal.

4 Experiments

We present DeepMiner-Mano-7B, developed through a three-stage training methodology built upon
UI-TARS-1.5-7B, encompassing SFT, offline RL, and online RL. For comprehensive evaluation of
our model’s operational capabilities, we employ two complementary benchmarks: OSWorld-Verified
and Mind2Web for web-based operations, which provides extensive coverage across 100+ websites.

Table 4: Performance comparison across different methods on Mind2Web

Method Cross-Task Cross-Website Cross-Domain
Ele.Acc Op.F1 Step SR Ele.Acc Op.F1 Step SR Ele.Acc Op.F1 Step SR

Agent Framework
GPT-4o [16] SeeClick [7] 32.1 - - 33.1 - - 33.5 - -
GPT-4o [16] UGround [11] 45.7 - - 46.0 - - 46.6 - -
GPT-4o [16] Aria-UI [36] 57.6 - - 57.7 - - 61.4 - -
GPT-4V [21] OmniParser [28] 42.4 87.6 39.4 41.0 84.8 36.5 45.5 85.7 42.0
Agent Model
GPT-4o [16] 5.7 77.2 4.3 5.7 79.0 3.9 5.5 86.4 4.5
GPT-4 [1] 29.6 - 20.3 20.1 - 13.9 27.0 - 23.7
GPT-3.5(Text-only) [1] 19.4 59.2 16.8 14.9 56.5 14.1 25.2 57.9 24.1
GPT-4(Text-only) [1] 40.8 63.1 32.3 30.2 61.0 27.0 35.4 61.9 29.7
Claude4 [2] 62.7 84.7 53.5 59.5 79.6 47.7 64.5 85.4 56.4
Aguvis-7B [35] 64.2 89.8 60.4 60.7 88.1 54.6 60.4 89.2 56.6
Aguvis-72B [35] 69.5 90.8 64.0 62.6 88.6 56.5 63.5 88.5 58.2
CogAgent [14] - - 62.3 - - 54 - - 59.4
AutoWebGLM [17] - - 66.4 - - 56.4 - - 55.8
UI-TARS-7B [23] 73.1 92.2 67.1 68.2 90.9 61.7 66.6 90.9 60.5
UI-TARS-72B [23] 74.7 92.5 68.6 72.4 91.2 63.5 68.9 91.8 62.1
Mano-7B 80.8 91.5 73.9 75.7 91.4 68.3 74.3 91.5 67.6

4.1 Intra-testing

We introduce 2 benchmarks used for evaluation: multi-modal Mind2Web primarily evaluates the
accuracy of web-based operations, covering over 100 websites, 1,000+ operation trajectories, and
7,000+ actions, with 3 testing protocols for comprehensive assessment. OS-Verified comprises 369
evaluation tasks spanning 10 applications, where models execute corresponding tasks in real operating
environments, with the final pass rate serving as the evaluation metric. This testing approach more
authentically reflects model performance in practical deployment scenarios.

4.1.1 Browser Use Agent Testing

The evaluation of multi-modal Mind2Web primarily consists of 3 protocols: cross-task, which
measures generalization across tasks within the same environment; cross-website, which evaluates
generalization across websites within the same domain; and cross-domain, which assesses general-
ization across different tasks and environments. We adopt the official evaluation metrics, including
element accuracy (Ele.Acc), operation F1 score (Op.F1), and step success rate (Step SR). Our model
is trained on a combination of open-source data, trajectory data automatically collected through
Mano-Explorer, and manually annotated operation path data. We employ a three-stage training
pipeline consisting of SFT, offline RL, and online RL. At the SFT stage, we mix 10% open-source
data, 70% automatically collected operation trajectories, and 20% manually annotated data as the
training set, with a learning rate of 1e-5. During the offline RL stage, we select all samples with
grounding errors and samples with operational step errors during the planning process from the SFT
stage as the training set, employing GRPO for training with a group size of 8. At online RL stage, we
utilize trajectories from interactions in virtual environments using both automatically collected and
manually annotated samples as the final training set, thereby adapting to variations in real virtualized
environments. Our trained DeepMiner-Mano-7B is compared against SOTA methods based on both
agent frameworks and agent models on the Mind2Web test set. The results demonstrate that our

14

method achieves significant improvements in operation accuracy compared to SOTA approaches, at-
tributed to the incorporation of extensive online data augmentation for coordinate element localization
training and the introduction of RL to enhance localization precision. The accuracy of operation types
remains comparable to SOTA methods, while the overall success rate shows substantial improvement.
Detailed results are presented in Tab. 4.

Table 5: Performance on OSWorld (Foundation E2E GUI & Specialized model)
Method Approach & Details Success Rate (Avg±Std)

opencua-qwen2-7b Type: Specialized model, Max Steps: 100, Runs: 1 23.1
UI-TARS-7B Type: Specialized model, Max Steps: 100, Runs: 2 27.4±2.2
uitars-72b-dpo Type: Specialized model, Max Steps: 100, Runs: 1 27.1
TianXi-Action-7B Type: Specialized model, Max Steps: 50, Runs: 2 29.8±0.6
computer-use-preview Type: Specialized model, Max Steps: 50, Runs: 1 31.3
GUI-Owl-7B Type: Specialized model, Max Steps: 15, Runs: 1 32.1
opencua-32b Type: Specialized model, Max Steps: 100, Runs: 3 34.8±0.8

Mano-7B Type: Specialized model, Max Steps: 100, Runs: 2 41.6±0.7

4.1.2 Computer Use Agent Testing

We employ OSWorld-Verified as the benchmark for evaluating model performance on CUA end-to-
end tasks. The evaluation executes corresponding tasks in batches within Ubuntu virtual environments,
with the final evaluation metric being the average score. This metric represents the mean completion
score across all tasks in the evaluation set, where each task typically receives 100 points for successful
verification, 0 points for failure, with certain tasks allowing intermediate scores. During the CUA
training phase, we performed action space alignment, data organization restructuring, and reasoning
component adjustments on the open-source trajectory data provided by OpenCUA [32], which
constitutes 30% of the overall operation trajectory data. Additionally, we incorporate automatically
collected trajectory data, accounting for 30% of the total training data, and manually collected
computer operation trajectories, comprising 40% of the total training data. We also include grounding
data corresponding to the interfaces in the trajectories. In the training phase, we adopt the same
training approach and strategies as BUA to obtain the final model. We benchmarked our approach
against SOTA models from the Foundation E2E GUI & Specialized model track on the OSWorld-
Verified leaderboard, with comparative results presented in Tab. 5.

Table 6: Scaling of historical images

Number of historical images Avg Score

0 29.6
1 31.5
2 32.7
3 32.6
4 32.7

Table 7: SFT Training Ablation

Method Avg Score

Baseline 25.1
SFT (UITARS-1.5-7B) 29.9
SFT (DeepMiner-Mano-7B) 32.7

Table 8: Performance comparison across different training phases on OSWorld-Verified.
stage Method Avg score
– Baseline 25.1

Stage 1 SFT 32.7
Stage 2 Offline RL 33.7
Stage 3 Online RL 41.6

4.2 Ablation Study

We conducted ablation experiments on the following modules. (i). For the number of historical
images used in operation history modeling, we evaluated models with 0-4 historical images as context
on OSWorld-Verified, finding that 2 historical images yielded optimal performance, as shown in
Tab. 6. (ii).Under identical training data conditions, we performed SFT using two distinct approaches:
UITARS’s multi-turn dialogue framework for organizing historical operations and screenshots, and

15

our proposed method. Comparative analysis reveals that our approach—which summarizes historical
steps, reduces the quantity of historical images, and integrates reflection on historical data within the
thinking module—yields a 2.8 percentage point performance gain. Detailed comparative results are
presented in Tab. 7. (iii). We assessed performance improvements on OSWorld-Verified after different
learning stages of the model. Results indicate that benefiting from CUA training data expansion,
adjusted historical operation modeling approaches, the SFT stage alone achieved a significant
improvement of 7.6 points. The offline RL stage showed only a 1-point improvement, primarily
because the performance on SFT-stage training data was approaching saturation, with improvements
limited to particularly challenging element localization cases. To address this limitation, we sampled
more diverse data through interactions with online environments. Experimental results demonstrate
that online RL contributed a substantial improvement of 7.9 points. Detailed comparative results are
presented in Tab. 8.

Thought : The current page is in the "Keyword Reverse Lookup"
section, with a dropdown menu displaying the American flag and
"U.S. Site," meeting the task requirements. The ASIN "B01FV0F8H8"
has been entered in the input box, and a time selection dropdown
menu has appeared, showing options for "Last 30 Days" and the
months of 2025. However, the task requires filtering by December
2024. Since the months for 2024 are not yet visible in the dropdown
menu, you need to scroll down to see more options and
subsequently select December 2024.
Action Desp. : Therefore, the current action is to scroll down in
the "Select Month" dropdown to find and prepare to choose
December 2024.
Action : scrollmenu(start_box='(614,396),(708,668)')

Step 1 : Enter “B01FV0F8H8” in the “Please
enter a single ASIN” input box. ✅

Step 2 : Click on the “Select Time” dropdown
menu. ✅

Memory Trace Current Operation

Step 1

Step 2

Thought : The current page displays a popup with the message
"Dear Sorttime Pro User." In the center of the popup, there's a
blue button and a QR code, while the rest of the page is obscured,
preventing any further actions. To proceed with tasks like market
selection and ASIN input, it's necessary to close the popup. Click
the "x" in the upper-right corner of the popup to close it and
continue with the subsequent steps.
Action Desp. : Click the "x" in the upper-right corner of the
popup.
Action : click(start_box='(1284,68)')

Step 1 : Call user for assistance. ✅
(If no manual assistance is provided after
waiting, proceed with the next scheduled plan
by default.)

Step 1

Step 1 : Drag the mouse from “H” to “O” to
select the entire chemical formula “H2O”. ❌
Step 2 : Click on a blank area of the page to
deselect “H2O”. ✅

Thought : I notice that LibreOffice Writer is currently editing a
document named "H2O_Factsheet_WA.docx", with the title
"H2O—SOAK UP THE SCIENCE" at the top of the page. The
previous selection did not accurately capture the number "2" in
the title. To set the number "2" as a subscript, I need to perform
the selection again. Specifically, move the mouse to the number
"2" in the title "H2O", click and hold the left button, and drag to
ensure only the number "2" is selected for subsequent subscript
formatting.
Action Desp. : Move the mouse to the number "2" in the title
"H2O", click and hold the left button, and drag to precisely select
the number "2".
Action : drag(start_box='(689,500)', end_box='(709,499)')

Step 1

Step 2

Figure 9: Illustrative examples of Mano’s reasoning and execution process across 3 distinct scenarios.
Each row corresponds to one task instance: the left column records the historical trace of executed
actions with verification marks, while the right column displays the current reasoning state, including
generated Thought, action description, and executable function. Row 1 demonstrates environment
extension by scrolling a dropdown to reveal a hidden option; Row 2 shows exception handling and
generalization when facing an unexpected popup; Row 3 highlights self-analysis and correction
after an erroneous selection. Together, these cases illustrate Mano’s robustness, adaptability, and
error-aware reasoning in complex interactive environments.

4.3 Analysis and Visualization

Figure 9 presents 3 representative examples that illustrate the reasoning dynamics, error handling,
and generalization ability of the proposed Mano in real-world scenarios. Each row in the figure
corresponds to a complete task trace, where the left column records the historical action sequence
(denoted as Memory Trace), and the right column documents the current decision-making state
(Current Operation). In the historical trace, every step is annotated with the natural-language
description of the executed action (Action Desp or summary), followed by the verification results of
Mano-verify, which automatically checks the correctness of execution (success and failure). On the
right-hand side, the current operation displays the agent’s generated Thought, the translated action
description, and the executable action function along with explicit parameters such as coordinate
locations. By jointly examining these two perspectives, we can directly observe how Mano integrates
memory-based reasoning, current-state perception, and self-correction to accomplish complex tasks.

16

4.3.1 Case 1: Controlled Completion via Menu Expansion

The first row illustrates a standard case of interaction with a structured web interface. The task
requires the system to input a specific ASIN code into the designated text field, open a time-selection
dropdown menu, and subsequently choose a temporal option that does not initially exist in the interface
(2024-12). From the historical trace, we observe the sequential steps of text input and dropdown
activation, both successfully executed and validated by Mano-verify. At the current stage, however,
the required temporal option is missing in the visible range. The agent thus reasons that scrolling
is necessary to reveal additional menu items. The generated action specifies a direct coordinate-
based scrolling command (scrollmenu(start_box = (614, 396), end_box = (708, 668))), which
ensures deterministic manipulation of the dropdown interface. This example highlights Mano’s
ability to augment incomplete environments by combining domain-specific priors (the existence of
the month “2024-12”) with low-level executable controls. The precise mapping from high-level
intention (“select 2024-12”) to low-level actionable coordinates exemplifies how our design enables
robust grounding across heterogeneous UI structures.

4.3.2 Case 2: Exception Handling and Generalization

The second row demonstrates a scenario that falls completely outside the training distribution: the
unexpected appearance of a modal popup that obscures the interface. Such irregular conditions are
common in real-world software environments, where unanticipated dialogues, update notifications,
or advertisements may interrupt task execution. In this case, the initial system response is to invoke
(call_user()), an action representing explicit escalation for human intervention. This decision
reflects Mano’s design principle of fail-safe delegation, where safety and accuracy take precedence
over forced autonomous operation. Importantly, the figure also shows that after a certain waiting
period without manual assistance, the agent autonomously reevaluates the environment and proposes
to close the popup by clicking the “x” in the upper-right corner. This adaptive behavior illustrates
Mano’s generalization capacity: despite never encountering such a configuration during training, it
successfully extrapolates an appropriate action by leveraging its perception-action alignment and
failure-recovery strategies. The coexistence of human-in-the-loop fallbacks and autonomous recovery
mechanisms demonstrates the system’s robustness to environmental uncertainty.

4.3.3 Case 3: Self-Analysis and Error Correction

The third row presents an instructive case of error correction within a document-editing environment
(LibreOffice Writer). The task involves selecting the subscript “2” in the chemical formula “H2O”.
Initially, the agent incorrectly selects the entire token “H2O”, as confirmed by Mano-verify with a
failure mark. Crucially, rather than persisting in the erroneous behavior, Mano engages in explicit
self-analysis, recognizing that the prior selection exceeded the intended scope. In its subsequent
reasoning, the agent refines the action to precisely drag-select the single character “2” by adjusting
the bounding box coordinates. This correction not only achieves the intended goal but also illustrates
the model’s capacity for reflective reasoning: by integrating feedback signals (from the verification
module) with its internal plan, it can update its policy on the fly. This form of error-aware self-
adjustment is particularly valuable in dynamic editing tasks, where fine-grained precision is required,
and even minor deviations can compromise the semantic correctness of results.

4.3.4 Discussion

Collectively, the 3 cases reveal distinct yet complementary dimensions of Mano’s operational relia-
bility. Case 1 emphasizes environment extension through low-level grounding, enabling the system
to interact with incomplete or hidden UI elements. Case 2 illustrates resilience to unexpected dis-
turbances, where the agent can flexibly transition between human-assisted and autonomous modes.
Case 3 demonstrates reflective correction, showing that the system can internalize mistakes and
rectify them within a single execution trajectory. Taken together, these observations highlight the
effectiveness of our design philosophy: integrating structured memory, explicit reasoning chains, and
feedback-driven correction mechanisms to achieve robust, generalizable, and self-adaptive action
execution.

These examples also underscore the methodological significance of joint visualization. By juxtaposing
Memory Trace and Current Operation, we make the internal reasoning processes of the agent

17

transparent to both developers and users. This transparency not only facilitates debugging and
evaluation but also provides a clear foundation for trust and accountability in practical deployments.

5 Conclusion and Future Work

Mano represents a paradigm shift in the development of robust, general-purpose Graphical User
Interface (GUI) agents. By seamlessly integrating a state-of-the-art multimodal foundation model with
a meticulously structured three-stage training pipeline, Mano achieves unprecedented performance in
GUI interaction tasks. The training pipeline, comprising SFT, offline RL, and online RL, is augmented
by carefully crafted reward designs and a novel simulated environment. This comprehensive approach
enables Mano to achieve strong alignment with GUI-specific domains, enhance multistep reasoning
capabilities, and significantly improve adaptability to dynamic interfaces.

Rigorous empirical evaluations conducted on established benchmarks, including Mind2Web and
OSWorld, demonstrate Mano’s superiority in multiple key performance metrics. In particular, Mano
sets new state-of-the-art standards in success rate, element precision, and stepwise completion. Exten-
sive ablation studies corroborate the efficacy of critical design choices, such as the implementation
of online RL, the utilization of historical context, the application of attention constraints and the
incorporation of a closed-loop data cycle. Each of these components contributes substantially to the
agent’s overall performance, underscoring the synergistic nature of Mano’s architecture.

The remarkable results achieved by Mano emphasize the critical importance of domain-specific data
generation, iterative training through reinforcement learning, and holistic reward design to overcome
the inherent limitations of conventional vision language models in GUI interaction tasks. Beyond
providing a scalable and efficient framework for GUI automation, Mano offers valuable insights into
the symbiotic relationship between imitation learning and reinforcement learning in the context of
embodied AI systems.

Future research directions for the Mano project are multifaceted and promising. We plan to elucidate
the data acquisition capabilities of Mano-parking in greater detail, proposing a novel benchmark that
positions data acquisition as the primary objective. Additionally, we aim to provide comprehensive
insights into the training methodology and the reasoning process integration of Mano-verify. Fur-
thermore, we intend to expand Mano’s functionality by introducing Mano-cipher and its automated
login capabilities, thereby enhancing its applicability in real-world environments and enhancing the
on-device deployment ability based on model compression techniques [37].

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Anthropic. The claude 3 model family: Opus, sonnet, haiku. URL https://api.
semanticscholar.org/CorpusID:268232499.

[3] Hao Bai, Yifei Zhou, Jiayi Pan, Mert Cemri, Alane Suhr, Sergey Levine, and Aviral Kumar.
Digirl: Training in-the-wild device-control agents with autonomous reinforcement learning.
Advances in Neural Information Processing Systems, 37:12461–12495, 2024.

[4] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile
abilities. arXiv preprint arXiv:2308.12966, 2023.

[5] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang
Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen
Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report,
2025. URL https://arxiv.org/abs/2502.13923.

[6] Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie Fang, Yue Zhao, Chongyi Wang, Jun
Liu, Guirong Chen, Yupeng Huo, et al. Guicourse: From general vision language models to
versatile gui agents. arXiv preprint arXiv:2406.11317, 2024.

18

https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://arxiv.org/abs/2502.13923

[7] Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Li YanTao, Jianbing Zhang, and Zhiyong
Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents. In Proceedings of
the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 9313–9332, 2024.

[8] Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web. Advances in Neural Information
Processing Systems, 36:28091–28114, 2023.

[9] Pavel Feldman, Dmitry Gozman, Yury Semikhatsky, Max Schmitt, Andrey Lushnikov, Play-
wright Service, Joel Einbinder, github-actions[bot], Simon Knott, Debbie O’Brien, Sander, Ross
Wollman, microsoft-playwright-automation[bot], Adam Gastineau, Arjun Attam, Diego Pino,
Anže Vodovnik, Darío Kondratiuk, dependabot[bot], Jean-François Greffier, nina, Holger Benl,
Rui Figueira, Henrik Skupin, Meir Blachman, Navdeep Singh, Chris, Marcin Strzyz, Sidharth
Vinod, and Yevhen Laichenkov. microsoft/playwright. https://github.com/microsoft/playwright,
sep 10 2025. URL https://github.com/microsoft/playwright.

[10] Lang Feng, Weihao Tan, Zhiyi Lyu, Longtao Zheng, Haiyang Xu, Ming Yan, Fei Huang, and
Bo An. Towards efficient online tuning of vlm agents via counterfactual soft reinforcement
learning. arXiv preprint arXiv:2505.03792, 2025.

[11] Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun,
and Yu Su. Navigating the digital world as humans do: Universal visual grounding for GUI
agents. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=kxnoqaisCT.

[12] Zeyu Han, Chao Gao, Jinyang Liu, Sai Qian Zhang, et al. Parameter-efficient fine-tuning for
large models: A comprehensive survey. arXiv preprint arXiv:2403.14608, 2024.

[13] Wenyi Hong, Weihan Wang, Ming Ding, Wenmeng Yu, Qingsong Lv, Yan Wang, Yean Cheng,
Shiyu Huang, Junhui Ji, Zhao Xue, et al. Cogvlm2: Visual language models for image and
video understanding. arXiv preprint arXiv:2408.16500, 2024.

[14] Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang,
Zihan Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 14281–14290, 2024.

[15] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
International Conference on Learning Representations, 2022.

[16] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
preprint arXiv:2410.21276, 2024.

[17] Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu,
Hanchen Zhang, Xiaohan Zhang, Yuxiao Dong, et al. Autowebglm: A large language model-
based web navigating agent. In Proceedings of the 30th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, pages 5295–5306, 2024.

[18] H.Y. Leong and Y. Wu. Why should next-gen llm multi-agent systems move beyond fixed
architectures to dynamic, input-driven graphs? SSRN Electronic Journal, 2024. doi: 10.2139/
ssrn.5276004. URL https://ssrn.com/abstract=5276004.

[19] Run Luo, Lu Wang, Wanwei He, and Xiaobo Xia. Gui-r1: A generalist r1-style vision-language
action model for gui agents. arXiv preprint arXiv:2504.10458, 2025.

[20] Dang Nguyen, Jian Chen, Yu Wang, Gang Wu, Namyong Park, Zhengmian Hu, Hanjia Lyu,
Junda Wu, Ryan Aponte, Yu Xia, et al. Gui agents: A survey. arXiv preprint arXiv:2412.13501,
2024.

[21] OpenAI. Gpt-4v(ision) system card. 2023.

19

https://github.com/microsoft/playwright
https://openreview.net/forum?id=kxnoqaisCT
https://ssrn.com/abstract=5276004

[22] Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao Sun, Wenyi Zhao, Yu Yang, Xinyue
Yang, Jiadai Sun, Shuntian Yao, et al. Webrl: Training llm web agents via self-evolving online
curriculum reinforcement learning. arXiv preprint arXiv:2411.02337, 2024.

[23] Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang,
Jiahao Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with
native agents. arXiv preprint arXiv:2501.12326, 2025.

[24] Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. Advances in Neural Information
Processing Systems, 36:59708–59728, 2023.

[25] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

[26] Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1.
MIT press Cambridge, 2018.

[27] Liujian Tang, Shaokang Dong, Yijia Huang, Minqi Xiang, Hongtao Ruan, Bin Wang, Shuo Li,
Zhihui Cao, Hailiang Pang, Heng Kong, et al. Magicgui: A foundational mobile gui agent with
scalable data pipeline and reinforcement fine-tuning. arXiv preprint arXiv:2508.03700, 2025.

[28] Jianqiang Wan, Sibo Song, Wenwen Yu, Yuliang Liu, Wenqing Cheng, Fei Huang, Xiang Bai,
Cong Yao, and Zhibo Yang. Omniparser: A unified framework for text spotting key information
extraction and table recognition. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 15641–15653, 2024.

[29] Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen,
Jiakai Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous
agents. Frontiers of Computer Science, 18(6):186345, 2024.

[30] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing
Liu, Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men,
Dayiheng Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-
language model’s perception of the world at any resolution. arXiv preprint arXiv:2409.12191,
2024.

[31] Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi
Yang, Lei Zhao, Song XiXuan, et al. Cogvlm: Visual expert for pretrained language models.
Advances in Neural Information Processing Systems, 37:121475–121499, 2024.

[32] Xinyuan Wang, Bowen Wang, Dunjie Lu, Junlin Yang, Tianbao Xie, Junli Wang, Jiaqi Deng,
Xiaole Guo, Yiheng Xu, Chen Henry Wu, Zhennan Shen, Zhuokai Li, Ryan Li, Xiaochuan Li,
Junda Chen, Boyuan Zheng, Peihang Li, Fangyu Lei, Ruisheng Cao, Yeqiao Fu, Dongchan
Shin, Martin Shin, Jiarui Hu, Yuyan Wang, Jixuan Chen, Yuxiao Ye, Danyang Zhang, Dikang
Du, Hao Hu, Huarong Chen, Zaida Zhou, Haotian Yao, Ziwei Chen, Qizheng Gu, Yipu Wang,
Heng Wang, Diyi Yang, Victor Zhong, Flood Sung, Y. Charles, Zhilin Yang, and Tao Yu.
Opencua: Open foundations for computer-use agents, 2025. URL https://arxiv.org/abs/
2508.09123.

[33] Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
llm-based software engineering agents. arXiv preprint arXiv:2407.01489, 2024.

[34] Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. Advances in Neural Information
Processing Systems, 37:52040–52094, 2024.

[35] Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao
Yu, and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction. In
Forty-second International Conference on Machine Learning.

20

https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2508.09123
https://arxiv.org/abs/2508.09123

[36] Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei Chen, Chao Huang, and Junnan Li.
Aria-ui: Visual grounding for gui instructions. In ICLR 2025 Workshop on Foundation Models
in the Wild.

[37] JiangYong Yu, Sifan Zhou, Dawei Yang, Shuoyu Li, Shuo Wang, Xing Hu, Chen Xu, Zukang Xu,
Changyong Shu, and Zhihang Yuan. Mquant: Unleashing the inference potential of multimodal
large language models via static quantization. In Proceedings of the 33rd ACM International
Conference on Multimedia, 2025.

[38] Yiming Zeng, Wanhao Yu, Zexin Li, Tao Ren, Yu Ma, Jinghan Cao, Xiyan Chen, and Tingting
Yu. Bridging the editing gap in llms: Fineedit for precise and targeted text modifications. arXiv
e-prints, pages arXiv–2502, 2025.

[39] H. Zhang, B. Huang, Z. Li, X. Xiao, H.Y. Leong, Z. Zhang, X. Long, T. Wang, and H. Xu.
Sensitivity-lora: Low-load sensitivity-based fine-tuning for large language models. In Findings
of the 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2025.
URL https://openreview.net/forum?id=5erJwHj6CC#discussion.

[40] J. Zhang, J. Gao, W. Ouyang, W. Zhu, and H.Y. Leong. Time-llama: Adapting large language
models for time series modeling via dynamic low-rank adaptation. In Proceedings of the
63rd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student
Research Workshop). Association for Computational Linguistics (ACL 2025), 2025. ISBN
979-8-89176-254-1. doi: 10.18653/v1/2025.acl-srw.90. URL https://aclanthology.org/
2025.acl-srw.90/. Poster.

[41] Le Zhang, Bo Wang, Xipeng Qiu, Siva Reddy, and Aishwarya Agrawal. Rearank: Reasoning
re-ranking agent via reinforcement learning. arXiv preprint arXiv:2505.20046, 2025.

[42] Sifan Zhou, Shuo Wang, Zhihang Yuan, Mingjia Shi, Yuzhang Shang, and Dawei Yang. GSQ-
tuning: Group-shared exponents integer in fully quantized training for LLMs on-device fine-
tuning. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar,
editors, Findings of the Association for Computational Linguistics: ACL 2025, pages 22971–
22988, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-
89176-256-5. doi: 10.18653/v1/2025.findings-acl.1178. URL https://aclanthology.org/
2025.findings-acl.1178/.

21

https://openreview.net/forum?id=5erJwHj6CC#discussion
https://aclanthology.org/2025.acl-srw.90/
https://aclanthology.org/2025.acl-srw.90/
https://aclanthology.org/2025.findings-acl.1178/
https://aclanthology.org/2025.findings-acl.1178/

	Introduction
	Method
	Training of Mano
	First-stage: Supervised Fine-tuning
	Second-stage: Multi-step Reasoning via Offline Reinforcement Learning
	Third-stage: Online Reinforcement Learning

	Mano-parking
	Mano-verify Model
	Mano-cipher

	Data Cycling System
	Template and Action definition
	Unified Trajectory Collection Pipeline for Desktop and Web Environments
	Data organization
	Closed-loop data cycle

	Experiments
	Intra-testing
	Browser Use Agent Testing
	Computer Use Agent Testing

	Ablation Study
	Analysis and Visualization
	Case 1: Controlled Completion via Menu Expansion
	Case 2: Exception Handling and Generalization
	Case 3: Self-Analysis and Error Correction
	Discussion

	Conclusion and Future Work

